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Abstract 

Non-tuberculous Mycobacterial Pulmonary Disease (NTM-PD) is an increasingly recognised global health issue. 
Studies have suggested that neutrophils may play an important role in controlling NTM infection and contribute to 
protective immune responses within the early phase of infection. However, these cells are also adversely associated 
with disease progression and exacerbation and can contribute to pathology, for example in the development of bron-
chiectasis. In this review, we discuss the key findings and latest evidence regarding the diverse functions of neutro-
phils in NTM infection. First, we focus on studies that implicate neutrophils in the early response to NTM infection and 
the evidence reporting neutrophils’ capability to kill NTM. Next, we present an overview of the positive and negative 
effects that characterise the bidirectional relationship between neutrophils and adaptive immunity. We consider the 
pathological role of neutrophils in driving the clinical phenotype of NTM-PD including bronchiectasis. Finally, we 
highlight the current promising treatments in development targeting neutrophils in airways diseases. Clearly, more 
insights on the roles of neutrophils in NTM-PD are needed in order to inform both preventative strategies and host-
directed therapy for these important infections.
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Introduction
Non-tuberculous mycobacterial pulmonary disease 
(NTM-PD) is an increasingly prevalent and challenging 
infection syndrome that causes significant morbidity, 
healthcare utilization and mortality [1].

Although there are over 170 NTM species, most NTM-
PD results from a small number of these environmental 
bacteria, which act as human opportunistic pathogens 
[2] but differ in their pathogenicity and response to 
treatment [3, 4]. Common species causing NTM-PD are 
Mycobacterium avium complex (MAC), (most often the 

slower-growing M. avium, M. intracellulare and M. chi-
maera species), M. kansasii, and M. xenopi, and also the 
rapid-grower M. abscessus complex (MABC) [5, 6].Unlike 
tuberculosis, which typically affects younger people with-
out other co-morbid illness, NTM lung disease com-
monly occurs in people aged fifty years or above, who 
may have other underlying conditions, e.g., bronchiecta-
sis, chronic obstructive pulmonary disease (COPD) and 
cystic fibrosis (CF) [7–9].

The decision to treat is not straightforward: some 
patients appear to spontaneously clear infection and oth-
ers are clinically stable without treatment over long peri-
ods of time [9]. Further, antimicrobial therapy is often 
prolonged, can be poorly tolerated [10] and not necessar-
ily effective.

Studies on the host immune response to NTM have 
generally focused on T cells, ‘T helper-1’ cytokines and 
mononuclear phagocytes [11]. While these are important 
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in protection against NTM [12], their role in either caus-
ing or preventing lung damage is less well-defined.

Generally, professional phagocytes (neutrophils, mac-
rophages, and dendritic cells) are considered as a first-
line defence against bacterial pathogens. Neutrophil 
polymorphonuclear granulocytes are the most prominent 
cell type in the bronchial lumen and are rapidly recruited 
to sites of infection when they sense signals from che-
moattractants such as Interleukin-8 (IL-8) generated by 
host cells. Following migration (chemotaxis)  they trap 
and kill the invading pathogens. Neutrophils are known 
to be essential for defence against extracellular bacte-
ria [13]. However, the role of the neutrophil response 
in NTM-PD is still not completely understood. Recent 
studies have suggested that neutrophils may help control 
NTM infection [14, 15]; though they can also contribute 
to NTM-associated disease pathology, for example in the 
development of bronchiectasis [14, 16]. In this review we 
discuss the role of neutrophils in relation to non-tuber-
culous mycobacterial pulmonary disease (NTM-PD) and 
explore the apparently conflicting contributions of neu-
trophils in this disease.

Neutrophils and immunity
Neutrophils’ antibacterial functions include phagocytosis 
(ingestion), degranulation (release of soluble antimicro-
bials either into the phagosome or extracellularly), and 
the release of nuclear material in the form of neutrophil 
extracellular traps (NETs) [17, 18]. Initiation of neutro-
phil phagocytosis is significantly enhanced by opsoni-
sation of the bacteria whereby opsonins, for example 
complement components and immunoglobulins (Igs), 
coat the bacteria and are recognized by specific surface 
receptors on neutrophils causing avid binding and trig-
gering ingestion.

Generally, once phagocytosis has been initiated by 
engagement of opsonic receptors, internalisation of 
the pathogen within phagosomes inside the neutrophil 
occurs in seconds [19].

Subsequently, phagosomal maturation with intracel-
lular granule fusion takes place and gives neutrophils 
unique advantages over other phagocytes as the granules 
contain powerful bactericidal proteins. Four groups of 
granules are found in neutrophils: azurophil (primary), 
containing enzymes such as neutrophil elastase (NE) and 
antibacterial molecules including azurocidin and human 
neutrophil peptides (HNP) 1–3, specific granules (sec-
ondary), gelatinase granules, and secretory vesicles, each 
playing specific roles during the response to infection 
[20]. Some of these are discussed in more detail below.

NADPH oxidase in the wall of secondary granules ini-
tiates the oxidative burst, leading to the production of 
antimicrobial reactive oxygen intermediates (superoxide, 

hydrogen peroxide, hypochlorous acid). However, neu-
trophil influx may also be associated with pathology 
through the release of these cytotoxic contents; and if 
neutrophils are disrupted these processes may lead to 
damage of neighbouring cells and tissue injury [21, 22].

Neutrophils are also professional bacteria-responsive 
immune cells. Toll-like receptors (TLRs) are a type of 
pattern recognition receptor (PRR) that trigger the innate 
immune response by sensing conserved molecular pat-
terns and allowing early immunological pathogen detec-
tion [23].

These rapid antimicrobial neutrophil functions give 
the acquired immune system enough time to develop 
pathogen-specific immunity, although, as discussed later, 
neutrophil behaviour can itself influence the acquired 
immune response.

The neutrophil response to NTM
Innate phagocytic immune cells, including mononu-
clear phagocytes such as macrophages, rapidly eliminate 
mycobacteria through phagocytosis and intracellular 
killing, and an impairment in this process can predis-
pose to the development of mycobacterial infection [24, 
25]. Although the neutrophil response to NTM is poorly 
studied, previous work has proposed that granulocytes 
are important participants in the host defence against 
mycobacteria [26, 27] and these cells can kill several spe-
cies of mycobacteria [28]. However they are also impli-
cated in the pathology of mycobacterial diseases such as 
tuberculosis [16, 29] where they are the dominant host 
cell for infecting organisms in sputum, bronchoalveolar 
lavage (BAL) fluid, and cavity contents in patients with 
pulmonary TB disease [14]. Although it is clearly sim-
plistic to translate results in Mycobacterium tuberculosis 
(Mtb)-based experiments to NTM, precise data on NTM 
are often lacking and in this review where necessary we 
have discussed the available data for Mtb. This highlights 
the urgent need for more research on NTM (and espe-
cially those species which cause most human disease).

Using Mtb, Jones et  al. and Majeed et  al. found high 
efficacy of mycobacterial phagocytosis by neutrophils 
through complement-mediated opsonization [30, 31]. 
However, the results of in vitro studies by Irina et al. and 
Lenhart-Pendergrass et  al. pointed out the low capacity 
of neutrophils to phagocytose non-opsonized M. smeg-
matis and M. avium respectively [32, 33]. Collectively, 
these data suggest that neutrophils are capable of phago-
cytosing mycobacteria but this is may require opsoniza-
tion by complement or immunoglobulins and could vary 
between species [33].

TLR-2 deficient mice with M. avium infection exhib-
ited defective neutrophil function and a subsequent 
impairment in controlling the infection in its early stages 
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[34, 35], implying a potentially crucial role for neutro-
phils in the host immune response to NTM. Conversely, 
it has been shown that neutrophils might contribute to 
the pathological dissemination of the infection rather 
than early clearance among genetically-susceptible mice, 
though this did depend on the mycobacterial species 
(occurring with M. avium but not Mtb [36]). Specifically, 
it has been suggested that neutrophils may carry myco-
bacteria to the pulmonary surface [14].

Faldt et al. reported that NTM (M. avium and M. smeg-
matis) induced a significantly higher secretion of TNFα, 
IL‐6, and IL‐8 from activated neutrophils than Mtb which 
might suggest these species evoke innate immune reac-
tions that can lead to effective clearance of mycobacteria 
[37].

Table 1 summarises mouse studies suggesting a signifi-
cant role for neutrophils in the early response to NTM 
infection, some of which are further explored in the next 
section.

Animal models and human genetic studies implicate 
neutrophils in the host response to mycobacterial infection
Over 35 years ago, Brown and colleagues documented an 
interaction between neutrophils and mycobacteria [42]. 
Appelberg et  al. subsequently demonstrated the major 
contribution of neutrophils to protect against intrave-
nously inoculated mycobacterial infection when, using 

granulocyte-depleting monoclonal antibody (MAb) RB6-
8C5 treatment, they noted a higher bacterial growth [38]. 
Petrofsky and Bermudez used a similar procedure for 
neutrophil depletion and also concluded that neutrophils 
provide some protection against M. avium during the 
early phase of infection [35]. In contrast, Saunders and 
Cheers did not identify a clear protective role for mouse 
lung neutrophils following inhalational challenge with M. 
avium, despite using similar experimental methods [43].

A study by Goncalves and Appelberg suggested that the 
CXC receptor 2 (CXCR2) may play a key role in neutro-
phil recruitment following mycobacterial infection. In 
comparison to control mice, the CXCR2 knockout mice 
had considerably fewer neutrophils in the peritoneal 
cavity over the course of a 15-day intraperitoneal infec-
tion with M. avium. However, the CXCR2 mutation had 
no effect on neutrophil recruitment to the lungs during 
an aerogenic M. avium infection over the course of the 
60-day trial—suggesting that this may be a tissue site-
related phenomenon [39].

Whole-Blood Gene Expression has been performed 
to investigate the host immune response to NTM-PD. 
A recent study included 25 patients with NTM-PD and 
27 controls who were uninfected but had respiratory 
disease. Microarray analysis suggested that the NTM-
PD population had decreased expression of 213 genes 
associated with T-cell signalling, including IFN-g. Chest 

Table 1  Studies suggesting a role for neutrophils in NTM infection

CFU Colony Forming Unit, G-CSF Granulocyte-Colony Stimulating Factor, LPS lipopolysaccharide

Study models/Reference Mycobacteria sp Intervention Observations

Mouse intravenously infected 106 CFU 
[38]

M. avium Neutrophils of C57BL/6 mice infused into 
susceptible beige mice

Decreased the growth rate of M. avium 
compared to control beige mice

Neutrophil depletion in C57BL/6 mice Increased growth rate compared to control 
C57BL/6 mice

Mouse 106 CFU or 30 mg LPS intraperi-
toneally 5 × 104 CFU or 5 mg of LPS 
intratracheally [39]

M. avium Gene-disrupted (CXCR2−/−) mice infected 
with M. avium or treated with LPS intra-
peritoneally/ intratracheally

Early and rapid recruitment of neutro-
phils with M. avium infection significantly 
impaired with CXCR2 chemokine signalling 
defect compared to controls

Mouse intraperitoneally infected 108 CFU 
[27]

M. avium Intravenous inoculation of mycobacteria 
into CD-l mice

Neutrophil phagocytosis caused degrada-
tion of the bacteria and release of enzy-
matic granules (lactoferrin) that increase 
macrophage effectiveness in eliminating 
mycobacteria and enhancing the further 
killing process

Mouse intravenously infected 107 CFU 
[40]

M. avium Administration of G-CSF into C57BL/6 
black mice

Neutrophils showed anti-mycobacterial 
activity. Neutrophil activation inhibited 
growth compared with control

Mouse intravenously infected 106 CFU 
[34]

M. avium TLR2−/− deficient mice infected with M. 
avium

Defect in early recruitment of neutrophils 
as compared to the control wild-type (WT)

Mouse intratracheally inoculated 
8 × 107 CFU [41]

M. abscessus Wild type and cystic fibrosis mice inocu-
lated with mycobacteria

Infection causes greater host inflamma-
tory response based on high neutrophil 
number in the bronchoalveolar lavage of 
mice infected with rough morphotype 
compared to smooth morphotype in both 
type
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CT lesion severity, lung dysfunction, and other markers 
of disease severity including high neutrophil count were 
associated with decreased IFN-g expression [44].

Collectively, this experimental evidence suggests that 
neutrophils play an important role in the host response 
to NTM infection though does not define what this 
might be, or whether it is protective or driving pathology.

Can neutrophils kill NTM?
Several in  vitro studies (summarised in Table  2) have 
addressed the capacity of human neutrophils to kill NTM 
species with the general consensus that neutrophils can 
eliminate—or at least restrict the growth of—clinically 
important NTM.

There is limited clinical evidence reporting the NTM 
susceptibility in neutropenic patients or those with neu-
trophil disorders [44]. However, neutropenia has been 
associated with disseminated NTM (although not pul-
monary NTM) in patients with haematological malig-
nancy [45].

A potential pathway through which neutrophils may 
kill mycobacteria is via human neutrophil peptides 
(HNP) 1, 2 and 3. These belong to a family of endogenous 
cationic antimicrobial and cytotoxic peptides (defensins) 

localised in the azurophilic granules. HNP also function 
as immunomodulatory molecules influencing cytokine 
production as well as inflammatory and immunological 
responses [46]. The ability of HNP-1 to kill M. tubercu-
losis has been studied in  vitro by Miyakawa et  al., [47], 
Sharma et al., [48], Kalita et al., [49], and Martineau et al., 
[50]. These studies have suggested that neutrophils may 
play a substantial role in innate resistance against TB 
infection through the activity of HNP and that these mol-
ecules could potentially be the basis of new therapeutic 
approaches.

However, another study showed that high concentra-
tions of HNP are detected in both cystic fibrosis (CF) 
and non-CF bronchiectatic airways and that these inhibit 
PMN function via interference with phagocytosis [51, 
52].

Neutrophils directly influence the development 
of an acquired immune response to NTM
Neutrophils have the ability to shape adaptive immunity 
and bridge the innate and adaptive immune systems [58, 
59].

Cytokine networks play significant roles in the cell 
mediated immune response to NTM infection. The T cell 

Table 2  In vitro studies of neutrophil ability for killing or restricting the growth of NTM

K Killing (reduction of CFU number), NR Not recorded, R Restriction (slower increase of CFU)

Organism Host Neutrophil purification Experimental Read out Observation Killing / Restriction Study 
reference

M. avium Human (HIV) Ficoll gradient 98–99% 
purity confirmed by 
microscopy

Radiometric assay (Bactec) Isolated neutrophils from 
AIDS patients responded 
to exogenously supplied 
G-CSF by inhibiting the 
growth of mycobacteria

R 3–10 days [53]

M. avium Human Ficoll sedimentation Purity 
NR

CFU Half of the bacteria 
phagocytosed at 15 min 
were killed by neutrophils 
at 45 min, and killing was 
nearly complete at 120 min

K 2 h [54]

M. avium Mouse Ficoll gradient > 97% purity 
confirmed by microscopy

CFU Neutrophils from mice 
treated with G-CSF were 
able to kill M. avium ex vivo, 
compared with controls

K 4 h [40]

M. fortuitum Human Ficoll gradient Purity NR CFU Killing of mycobacteria in 
the presence of serum, 
however no killing occurred 
in the absence of serum

K 2 h [55]

M. smegmatis Human Percoll, > 99% purity 
confirmed by haematoxylin 
staining

CFU Neutrophils’ antibacterial 
capacities demonstrated 
with efficient killing of 
mycobacteria

K Up to 6 h [56]

M. abscessus Human Percoll, > 98% purity con-
firmed by microscopy

CFU Mycobacteria activated 
the neutrophils’ bacterial 
clearance mechanisms, 
including ROS genera-
tion, NET formation, and 
phagocytosis

K 1 h [57]
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response against NTM is regulated by the production of 
IL-12 following endocytosis of mycobacteria by innate 
mononuclear phagocytes (eg dendritic cells (DC) and 
macrophages). In turn, activated CD4+ T cells (T-helper 
1) and CD8+ T cells release IFNγ which enhances kill-
ing by mononuclear phagocytes and is essential for host 
defence against mycobacteria [60, 61]. Therefore, NTM 
infection which overcomes initial innate mechanisms 
may be controlled by efficient Th1 responses mediated by 
IL-12 and IFNγ [62].

Genetic mutations in the IL-12-IFNγ pathway increase 
susceptibility to NTM infection, for example; IFN-γR1 
and IFN-γR2 deficiencies (both autosomal recessive and 
dominant forms), IL12β and IL12Rβ1 deficiencies, tran-
scription factor STAT1 deficiency, RAR-related Orphan 
Receptor C (RORC) deficiency, interferon-stimulated 
gene 15 (ISG15) deficiency, interferon regulatory factor 
8 (IRF8) deficiency and tyrosine kinase 2 (TYK2) defi-
ciency [63–66].

In particular, It has been reported that defects in 
IL-12 and IFNγ pathways can predispose to pulmonary 
NTM infections [67]. Notably, interleukin-12-induced 
IFNγ production from T cells also activates neutrophils 
to phagocytose and/or kill NTM [68]. Moreover, IL-17, 
IL-21, and IL-22 produced by T-helper 17 CD4+ T cells 
induce neutrophil influx into inflamed disease sites 
which might help arrest the progression of NTM infec-
tion via direct killing [69–71].

However, neutrophil recruitment can also contribute 
to negative effects on the acquired immune response. A 
study using a mouse model of MAC infection demon-
strated that when Th1 immunity is impaired, Th17 + cells 
provoked neutrophil recruitment that appeared to 
increase susceptibility to MAC infection [69]. There 
may be a particular negative effect of dead neutrophils. 
In a whole blood model with Mtb, necrotic neutrophils 
impaired host control of mycobacterial growth and 
increased immunosuppressive IL-10 as well as growth 
factors and chemokines [72]. This may result in further 
neutrophil accumulation at the site of disease: a patho-
logical cycle that can contribute to the undesirable 
impact of neutrophils on host outcome [16, 73].

‘Frustrated’ neutrophils that release granule contents 
extracellularly could drive tissue damage and cause pro-
found effects on T cell differentiation and proliferation 
[74–76]. Indeed, granule constituents or production of 
chemokines by neutrophils can mediate a suppressive 
effect directly or indirectly on T-cell responses, inac-
tivating T-cell stimulating cytokines, eg IL-2 and IL-6, 
and speeding up the shedding of IL-2 and IL-6 cytokine 
receptors on T-cells [58, 77–79].

As an example, neutrophil elastase selectively cleaves 
IL-2 receptor and IL-6 receptor, and leads to the 

reduction of co-stimulatory molecule expression by den-
dritic cells, thus limiting T cell maturation and affecting 
the development of the Th1 response [80]. Down-regu-
lation of T cell receptor (TCR) expression can also occur 
upon release of arginase and the production of reactive 
oxygen species (ROS) from neutrophils [58, 78].

Conversely, the production of NETs may reduce T cells’ 
activation threshold [81], while an abolition of Th1-spe-
cific responses has been reported when neutrophils were 
depleted during BCG vaccination of mice [82].

In summary, there is a bi-directional relationship 
between neutrophils and the acquired immune response 
with neutrophil behaviour potentially influencing T 
cell-mediated immunity either positively or negatively 
depending on the immune environment.

Figure  1 summarises the various potential roles for 
neutrophils in NTM pulmonary disease.

NTM, neutrophils and the humoral immune response
Mycobacteria are intracellular organisms and thus, 
cell-mediated immunity is considered to be the major 
component of host immunological defence against 
these bacteria. However, understanding the interaction 
between innate immunity, antibody-mediated immunity 
and cellular immunity is useful to determine strategies 
(both treatments and vaccines) that might combat NTM 
infection and disease.

Interactions of T cells, B cells and antigen present-
ing cells (APCs) with neutrophils allow neutrophils to 
modulate humoral adaptive immunity [76]. For exam-
ple, activated neutrophils have a role in B-cell develop-
ment through the production of B-cell activating factor 
(BAFF), which is an essential cytokine for B cell develop-
ment, and granulocyte colony-stimulating factor (G-CSF) 
[76, 83]. Reciprocally, B cells can influence neutrophil 
activity via the production of antibodies which opsonise 
mycobacteria and thereby enhance neutrophil phagocy-
tosis (discussed above).

The protective effect of the humoral immune response 
against mycobacterial antigens has been demonstrated 
in several models using Mtb. Kunnath et  al. described 
the contribution of the humoral immune response to 
the control of Mtb [84] and Hamasur et  al. showed the 
protective effects of mouse monoclonal IgG1 antibody 
to lipoarabinomannan (SMITB14) against tuberculosis 
when mice were infected intravenously [85]. Zimmer-
mann et al. demonstrated that IgA (but not IgG) antibod-
ies specific for different Mtb surface antigens blocked 
Mtb activity [86]. It is unclear whether the same applies 
to NTM – and this is an area which requires further 
investigation.

Glycopeptidolipids (GPLs) are a class of glycolipids 
expressed in the outer layer of several NTM species, 
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including MAC and M. abscessus. The GPLs of MAC 
are highly antigenic and serovar-specific and are associ-
ated with MAC virulence [87, 88]. A serological diag-
nostic test measuring the serum IgA antibody against 
MAC GPLs has been developed and used clinically to 
diagnose MAC disease. An increase of antibody lev-
els was recorded in patients with NTM-PD caused by 
MAC and not in patients with Mtb [89].

A recent study has  shown the utility of serological 
testing in the detection of culture-positive cases of M. 
abscessus infection in CF patients [90]. The test was 
based on the detection of IgA against M. abscessus pro-
tein, recombinant PLC (rPLC), and the TLR2eF extract. 
This IgA ELISA was able to differentiate M. abscessus 
from M. avium and M. chimaera infections (but not 
from M. intracellulare infection) based on the recogni-
tion of MABC proteins or extracts, in contrast to the 
older test which is based on the detection of antibodies 
recognizing the GPL core antigen of M. avium [90]. The 
prevalence of NTM infection in CF patients is currently 
being tested in a prospective study (clinical study num-
ber ID RCB:2017-A00025-48) using both ELISAs.

Overall, studies have identified a potential role for 
anti-mycobacterial antibodies during the course of infec-
tion and argue for further work to help elucidate their 
mechanisms of action [91–94]. Specifically, antibody-
mediated opsonisation of mycobacteria with subsequent 
enhancement of phagocytosis by neutrophils requires 
investigation.

The role of neutrophils in the pathology of NTM‑PD
The typical pulmonary radiological patterns seen in 
NTM infection include bronchiectasis and cavitation, 
both of which are understood to be driven in large part 
by neutrophils, with a particular role for neutrophil 
elastase [95, 96].

MAC and MABC are the most prevalent species caus-
ing NTM-PD, accounting for 95% of cases [97, 98]. 
MABC infection, typically seen in patients with a his-
tory of pulmonary disease such as cystic fibrosis and 
bronchiectasis, has the highest recorded fatality rate 
among rapidly growing mycobacteria [3, 99–101]. MAC 
is less clearly associated with severe disease, but around 

Fig. 1  Summary of the potential roles of neutrophils in non-tuberculous mycobacterial lung disease. The figure is made with BioRender (https://​
app.​biore​nder.​com/). Abbreviations: ROS: Reactive oxygen species; NET neutrophil extracellular trap

https://app.biorender.com/
https://app.biorender.com/
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35–42% of positive sputum cultures for MAC represent 
NTM-PD [102, 103].

Why NTM are so variably pathogenic in humans is 
unclear. This is the case even with M. avium, whose host 
response is probably best understood [104].

Upon entry into the body, NTM usually settle in the 
lower airways and, if clinical illness develops, this pre-
sents as localised inflammation (airways disease, pneu-
monia, cavitation) [105].

NTM-PD is frequently seen in association with bron-
chiectasis, which may precede or be a consequence of the 
infection. In general terms, bronchiectasis can be caused 
by an underlying condition such as CF or other disorders 
of ciliary function, associated with immune deficiency 
(especially antibody deficiency) or occurs secondary to 
infection [106, 107]. It usually presents with persistent 
productive cough and is characterised by impairment of 
mucus clearance from the airways. The accumulation of 
mucus in the damaged airways of the lungs generates a 
favorable site for bacteria (including NTM) to grow, lead-
ing to further inflammation with consequent damage and 
dilatation of the airways, often in the right middle lobe or 
the lingula segment. This destruction is usually accompa-
nied by clinical manifestations and establishes a ‘vicious 
circle’ due to the interaction between persistent or recur-
rent infection and excess inflammation [108].

Neutrophils are responsible for airway damage via the 
release of granule contents (human NE in particular) 
during degranulation [109] and are strongly implicated in 
the development of bronchiectasis. Granule-derived mol-
ecules have antimicrobial properties that assist in com-
bating the infection (see above), but they can also damage 
host tissues (leading to bronchial dilation) [58].

Neutrophil-dominant inflammation is a central feature 
of bronchiectasis pathogenesis. High levels of NE in the 
airways are associated with exacerbations and worse lung 
function in both CF and non-CF bronchiectasis [110].

Some studies have reported a higher neutrophil count 
in the sputum of bronchiectasis patients versus healthy 
controls which correlates with disease progression [111–
113]. Patients with bronchiectasis, who are at a consid-
erably increased risk of NTM-PD [114, 115], exhibit 
‘reprogramming’ of peripheral blood neutrophils during 
the stable state and prolonged neutrophil survival with 
impaired ability to kill and phagocytose bacteria, thereby 
perpetuating the vicious circle [116, 117]. However, this 
appears to improve following antibiotic treatment [116]. 
In addition, impairment of neutrophils’ phagocytic abil-
ity and ROS production in CF airways has been reported 
[118].

Any impairment of neutrophils’ ability to phagocytose 
and kill bacteria, including NTM, could contribute to 
perpetuation of the vicious circle in bronchiectasis [116].

Neutrophils can extrude the contents of their nuclei 
extruded to the extracellular space as neutrophil extra-
cellular traps (NETs). NETs are made up of chroma-
tin, histones, and various neutrophil granule proteins, 
including NE, cathelicidin, cathepsin G, and myeloperox-
idase (MPO) [119]. NETs are used to combat pathogens 
in a process called NETosis, a type of cell death [120]. 
Cytokines such as IL8, TNF, and IFN-γ can induce NETo-
sis in addition to bacterial components, mainly lipopoly-
saccharide (LPS) and lipophosphoglycan (LPG) [121].

NETs were initially identified as means of preventing 
bacterial dissemination by trapping and killing the bac-
teria [120]. However, Nakamura et al. found that MAC-
induced NET formation was not involved in killing but 
in the production of MMPs and IL-8 that promote the 
progression of lung infections [122]. Furthermore, NET 
components such as PR3, MPO, and NE, activated and 
released during NETosis, are cytotoxic and have been 
shown to cause direct damage to the endothelium.

Moreover, research has also shown that Type I IFN-
induced pulmonary NETosis can have a direct impact on 
TB pathogenesis in TB susceptible mice. The presence of 
NETs in necrotic lung lesions in patients with tuberculo-
sis also supports a causal role for NETosis in TB patho-
genesis [123, 124].

Another study has demonstrated the role of NETs in 
disease severity and treatment response in bronchiectasis 
[125], with the abundance of NET-associated proteins in 
patients’ sputum differing between mild and severe cases.

Targeting neutrophils for treatment
Although they may help control NTM during early infec-
tion, neutrophils appear to have a pathogenic role in the 
bronchiectasis associated with established NTM-PD. 
Some treatments have therefore attempted to directly 
target neutrophils to limit further tissue damage. These 
have focused on neutrophil influx, neutrophil weaponry 
and neutrophil function (Table  3). Although no neutro-
phil-targeting strategies are currently licensed [126, 127], 
several chronic inflammatory conditions are managed—
at least in part—by modifying neutrophil activity and 
numbers locally and systemically. These include asthma, 
ulcerative colitis, and rheumatoid arthritis [128].

In the clinical setting, therapies which reduce neutro-
phil number are less preferable as they have been asso-
ciated with compromising the patient’s immunity and 
increasing the risk of recurrent infections [129]. How-
ever, reduction of neutrophil migration in COPD patients 
seems to reduce their risk for exacerbations [126, 130].

In bronchiectasis, neutrophilic inflammation and dys-
functional killing of pathogens are considered key factors 
(see above). Whilst it has been proven that sputum NE 
is a useful marker for bronchiectasis during both stable 
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state and exacerbations, the treatment of bronchiecta-
sis through the inhibition of NE is still at an early stage 
[131]—though, this has been proposed for patients with 
COPD and CF using the selective NE inhibitor AZD9668 
[131–133].

A recent clinical trial of brensocatib, an inhibitor of 
dipeptidyl peptidase 1 (DPP-1), demonstrated a relation-
ship between the activity and quantity of neutrophil ser-
ine proteases and prognosis for patients with non-cystic 
bronchiectasis. A strong association was found between 
undetectable levels of sputum neutrophil elastase and the 
reduction of lung exacerbations [134].

Some therapies exist which may indirectly affect neu-
trophils’ function; Prezzo et  al. found that intravenous 
immunoglobulin (IVIg) replacement therapy for antibody 
defects affected neutrophil activation by reducing serum 
IL-8 concentration, the expression of its receptor CXCR1 
and the release of neutrophil elastase. This study sug-
gested that the reduction in IL-8/CXCR1 post IVIg infu-
sion may play a protective role in neutrophil-mediated 
inflammation [135]. Recently, Hitoshi et  al. identified 
that the anti-lipoarabinomannan (anti-LAM) monoclo-
nal IgMs, TMDU3 and LA066, significantly inhibited the 
phagocytosis of Mycobacterium avium by human neu-
trophils, and that mycobacterial load was reduced in the 
presence of neutrophils and anti-LAM IgM (albeit in the 
absence of other opsonins). These mannan core-directed 
monoclonal antibodies (mAbs) were therefore proposed 
as potential therapies to target aberrant or excessive neu-
trophil-associated immune responses [136].

Given the often poor response and considerable tox-
icity seen with antimicrobial therapies directed against 
NTM, there is an urgent need for new treatment options.

Conclusions
In summary, available evidence suggests that neutrophils 
can contribute to early clearance of infection via phago-
cytosis and killing but may also disseminate bacilli to 
distant sites. Neutrophils can influence (positively or nega-
tively) the development of acquired immune responses. 
In established disease, neutrophil products contribute to 
airway damage and are therefore appropriate targets for 
host-directed therapy. Currently, much of the evidence 
is extrapolated from research on Mtb which may not be 
an appropriate model for NTM, and NTM species differ 
between each other. Further research is required to fully 
characterise the diverse functions of neutrophils in NTM 
pulmonary disease.

Acknowledgements
We would like to acknowledge our patients with non-tuberculous mycobacte-
rial disease who have taught us so much over the years.

Author contributions
MA performed the literature search and drafted the manuscript. ML and DML 
assisted with writing the manuscript. All authors read and approved the final 
manuscript.

Funding
MA is funded by a King Saud University scholarship offered by the Saudi 
Government.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Table 3  Therapies directly targeting neutrophils currently being assessed in human chronic airway diseases

* NE Neutrophil elastase
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[130]

AZD7986 DPP1 COPD Blocks protease activation (reduces NE activity in the blood) via DPP1 inhibi-
tion

[140]

AZD1236 MMP COPD MMP-9, -12 inhibitor [141]
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GSK2292767

PI3K COPD/Asthma
Asthma

Suppression of IL-8 and IL-6 levels in sputum, airway anti-inflammatory activ-
ity
Inhibits neutrophil migration and degranulation

[142]
[143]
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