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Abstract
Background  Recurrent urinary tract infections (rUTIs) occur in over 20% of patients, with postmenopausal women 
(over 50 years old) carrying the highest risk for recurrence compared to younger women. Virulence factors such as 
type 1 fimbriae adhesin FimH, the outer membrane protease OmpT, and the secreted pore-forming toxin α-hemolysin 
(HlyA) have been shown to support the formation of intracellular bacterial communities (IBCs) within bladder 
epithelial cells (BECs), facilitating persistence. This study aims to characterize the virulence expression and intracellular 
persistence of ESBL-producing uropathogenic E. coli (E-UPEC) strains isolated from postmenopausal women with 
recurrent or single episode infections.

Methods  Study strains included 72 E-UPEC strains collected from patients (36 recurrent; 36 single episode) with a 
confirmed UTI diagnosis and control UPEC strains (CFT073 and UTI89). Patient demographics and clinical course were 
collected. Presence of hlyA, ompT, and fimH genes were confirmed by colony PCR, and qRT-PCR was performed using 
extracted RNA from a subset of 18 strains (12 recurrent; 6 single episode) grown in Luria-Bertani media and isolated 
from infected BECs to characterize gene expression. Bladder cell line 5637 was infected with study strains at MOI 
15 for 2 h, treated with amikacin for 2 h to remove extracellular bacteria, then lysed to enumerate intracellular CFU 
counts.

Results  No differences in clinical characteristics between patient groups were observed. Overall prevalence of fimH, 
ompT, and hlyA was 99% (71/72), 82% (59/72), and 26% (19/72) respectively; presence of all three genes did not differ 
between recurrent and single-episode strains. Notably, all recurrent strains had significantly more intracellular CFUs 
compared to single episode strains (median 16,248 CFU/mL vs. 4,118 CFU/mL, p = 0.018). Intracellular expression ompT 
was significantly increased (p = 0.0312) in the recurrent group compared to LB media, while fimH was significantly 
decreased (p = 0.0365) in the single episode group compared to expression in LB media.

Conclusion  Our findings indicate strain-specific ability to persist inside BECs with the recurrent strains exhibiting 
increased ompT expression inside BECs and higher intracellular bacterial burden compared to strains causing single 
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Background
Urinary tract infection (UTI) is one of the most common 
infections worldwide and responsible for over 11 million 
outpatient visits and costing over 4 billion dollars annu-
ally in the United States [1–3]. Women experience the 
highest risk for contracting UTIs with over 20% of female 
patients experiencing recurrence [4, 5]. Among those 
with recurrent UTIs, the subpopulations most affected 
are women in postmenopausal age and when extended 
spectrum beta-lactamase (ESBL) producing uropatho-
genic Escherichia coli (UPEC) is the causative pathogen 
[3, 6–8]. In addition to carrying a multidrug-resistant 
phenotype, UPEC strains can form intracellular bacte-
rial communities (IBCs) which are biofilm-like struc-
tures within bladder epithelial cells (BECs) that confer 
protection of the bacteria from antibiotic and immune 
cell exposure [9–12]. These IBCs go through a cycle of 
reinfection of surrounding BECs, allowing the bacteria 
to spread deeper within the bladder tissue of postmeno-
pausal women [4, 9]. When left untreated or incom-
pletely treated, these bladder infections, also known as 
cystitis, can progress to infections of the kidney (pyelone-
phritis) and urosepsis may ensue [9, 13]. UPEC virulence 
factors that have been identified to support IBC forma-
tion within BECs include type 1 fimbrial adhesin FimH 
which facilitates attachment to BECs, pore-forming 
toxin α-hemolysin (HlyA) which allows UPEC to escape 
lysosomal compartments within BECs, and outer mem-
brane protease OmpT which can degrade host antimi-
crobial peptides and contributes to intracellular biofilm 
formation [9, 14–16]. The fimH gene is only encoded on 
the chromosome, while hlyA and ompT genes can both 
be encoded on the chromosome as well as on plasmids 
[17–20]. Overall prevalence of fimH, hlyA, and ompT 
ranges from 86 to 100%, 21–47%, 67–94%, respectively 
[21–25]. However, the prevalence of these genes among 
UPEC strains isolated from postmenopausal women and 
particularly among those with recurrence is unknown. 
Significant reduction in IBCs has been shown in both in 
vitro and in vivo models of bladder infection with UPEC 
strains upon deletion of fimH, hlyA, and/or ompT, sup-
porting their role in UPEC pathogenesis [14–16, 19, 26]. 
While patient factors such as comorbid conditions and 
genetic polymorphisms as contributing factors to recur-
rence have been well described, whether microbial char-
acteristics differ between UPEC strains causing recurrent 
or single episode infections among postmenopausal 
women has not been well studied [7, 27, 28]. Therefore, 

we hypothesized that UPEC isolates from postmeno-
pausal women with recurrent episodes are better able 
to survive inside of BECs than single episode strains due 
to robust virulence factor expression supporting IBC 
formation during infection. In this study, we examined 
the clinical characteristics of postmenopausal women 
who experienced UTI caused by ESBL-producing UPEC 
strains and profiled the expression of fimH, hlyA, and 
ompT as well as the in vitro intracellular persistence in 
BECs. Our results indicate marked differences in viru-
lence factor expression and intracellular persistence 
between strains causing single versus recurrent episodes 
of UTI. This study emphasizes the importance of investi-
gating the contribution of microbial virulence to recur-
rent UTIs.

Methods
Study design
This study was conducted at a community-teaching hos-
pital on patients hospitalized during 2014–2021 under an 
IRB-approved protocol #HS-17-00943. Informed consent 
was waived since no interventions were made. Microbiol-
ogy reports were reviewed to identify patients who had a 
urine culture positive for ESBL-producing UPEC strain. 
ESBL phenotype was confirmed by the clinical microbi-
ology laboratory by disk diffusion using ceftazidime and 
ceftazidime/clavulanic acid discs in accordance with 
CLSI guidelines [29]. Electronic medical records were 
reviewed to screen for eligibility based on the following 
inclusion criteria: age 50 years or older (postmenopause), 
female sex, diagnosis of UTI based on symptomology, 
urinalysis, and/or discharge diagnosis, and the bacteria 
strain had been saved as part of a longitudinal surveil-
lance program to evaluate antimicrobial resistance trends 
at the institution. Single episode was defined as the 
absence of either a UTI diagnosis or positive urinalysis 
within 6 months of the “index” episode while recurrence 
was defined as two symptomatic episodes in 6 months or 
3 symptomatic episodes in 12 months. Episodes greater 
than 30 days apart were defined as separate UTI episodes. 
Patients were excluded if younger than 50 years old, male, 
or without UTI diagnosis. The following demographic 
and clinical characteristics were obtained from the medi-
cal records: age, ethnicity, UTI diagnosis, history of UTI 
within 12 months, comorbid conditions such as diabetes, 
dementia, kidney disease, immunocompromised status, 
and functional quadriplegia, presence of a chronic Foley 
catheter, antibiotic prescribed, and discharge disposition 

episode UTI. These results emphasize the potential microbial contributions to recurrence in postmenopausal women 
and warrant future investigations on the impact of antibiotic therapy and host response on IBC-supportive UPEC 
virulence.
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[28, 30, 31]. Saved bacteria strains were subjected to 
molecular and phenotypic analysis. All collected data 
was managed with the Research Electronic Data Capture 
(REDCap) software hosted at the University of Southern 
California, a secure web-based application designed to 
support data capture for research studies [32]. A subset 
of the UPEC strains matched by age were selected to rep-
resent recurrent and single episode strains in a 2:1 ratio 
to evaluate intracellular survival using an in vitro bladder 
infection model.

Presence of IBC-supportive genes
Polymerase chain reaction (PCR) was performed to 
identify the presence of IBC-supportive genes fimH, 
hlyA,  and ompT in ESBL-UPEC isolated from study 
patients. These IBC-supportive genes were chosen due 
to significant decreases in intracellular CFUs of deletion 
mutants observed in both cell line and mouse models of 
UTI infection [14, 16, 26, 33]. Colony PCR using a sin-
gle colony of each index strain from CHROMagar plates 
incubated at 37 °C overnight was used with Green GoTaq 
mastermix (Promega) and 250 nM primer concentration 
per the manufacturer’s instructions to perform an ini-
tial screen for the presence of fimH, hlyA, and ompT in 
the genome. If genes were not detected by colony PCR, 
colonies of bacteria from incubated CHROMagar plates 
were grown overnight at 37  °C, 250  rpm in LB Lennox 
broth for genomic DNA extraction using the QIAmp 
Mini extraction kit per the manufacturer’s instructions. 
Extracted genomic DNA (250 ng) was used with 250 nM 
primer concentration to perform PCR using the Green 
GoTaq mastermix (Promega) in 20 uL reaction mix per 
the manufacturer’s instructions to verify absence of the 
genes. UPEC reference strain UTI89 (cystitis strain) was 
used as a positive control given that it contains all three 
genes [15, 33, 34]. A previously sequenced UPEC strain 
with confirmed absence of ompT and hlyA was used as a 
negative control. The cysG gene was used as a reference, 
and the PCR products were visualized on a 1.5% aga-
rose gel using gel electrophoresis (Bio Rad) [35]. Primer 
sequences and conditions are listed in Supplemental 
Table 1.

Intracellular CFU assay
UPEC strains were selected to represent those caus-
ing recurrent and single episode respectively as well 
as presence or absence of IBC-supportive genes (hlyA 
and ompT; fimH was near universally present) to exam-
ine their propensity for intracellular survival and per-
sistence. The assay was performed following published 
protocol with modifications [10]. Briefly, human blad-
der epithelial cell line 5637 (ATCC HTB9) was selected 
for in vitro modeling of UTI in accordance with previous 
studies, and cultivated in RPMI + 10% FBS at 37  °C, 5% 

CO2 for up to nine passages [14, 16, 26, 33, 36]. Colonies 
of bacteria were incubated at 37 °C, 250 rpm in LB Len-
nox broth for 12–14  h, washed twice in chilled DPBS, 
and resuspended in RPMI media without fetal bovine 
serum (Gibco). 1.3 × 105 of BECs in RPMI + 10% FBS 
were seeded in 48-well plates 16  h prior to the start of 
the experiment. At the start of the experiments, mono-
layer was confirmed by light microscope and cells were 
washed once in warmed DPBS. Bacteria in RPMI media 
were adjusted to OD600 0.05, diluted 1/20 in 5 mL of 
RPMI + 10% FBS, then 400 uL of diluted bacteria was 
added to 48-well plate of washed BECs (final MOI 15). 
Infection was synchronized by centrifugation at 600 
xg, 25 C for 5 minutes then incubated at 37 C, 5% CO2 
for 2 h. Infecting dilution was also plated on LB agar in 
duplicate for CFU counts to confirm MOI. Extracellular 
bacteria were washed three times using warmed DPBS 
and 400 uL of RPMI + 10% FBS + 450 ug/mL amikacin 
was added to the wells and incubated at 37° C, 5% CO2 
for 2 h to kill remaining extracellular bacteria. Amikacin 
was used instead of gentamicin given high gentamicin 
resistance observed in the clinical strains and low cell 
penetration [37]. BECs were then washed twice using 
DPBS, lysed using 0.1% Triton X-100, and diluted and 
plated on LB agar in duplicate. Plates were incubated at 
37° C overnight and counted. Intracellular counts were 
normalized to initial CFU at the start of infection. UTI89 
and CFT073 were used as positive controls as their intra-
cellular persistence was previously described [14, 26]. 
The experiment was performed in six technical replicates 
and biological duplicates per strain.

Expression of IBC-supportive genes in LB and during in 
vitro infection
To assess expression of IBC-supportive genes in Luria-
Bertani (LB) media, bacteria were grown in LB Lennox 
overnight at 37° C, 250 rpm, diluted then grown to mid-
log phase (OD600 0.3) then extracted using the Purelink 
Mini RNA extraction kit per manufacturer instructions 
(Invitrogen). To assess intracellular expression of IBC-
supportive genes, the intracellular CFU assay was per-
formed above with modifications. 2 × 106 BECs were 
seeded in a 6 well plate and infected approximately 16 h 
later at MOI 50 to ensure sufficient yield of intracel-
lular bacterial RNA [38–40]. After the incubation with 
amikacin, wells were washed and lysed with lysis buffer, 
then extracted using the Purelink Mini RNA extraction 
kit per manufacturer instructions (Invitrogen). All RNA 
was treated with Turbo DNAse and cleaned using RNA 
Clean and Concentrate (Zymo). Purity and concentra-
tion of RNA was determined using threshold 260/280 
and 260/230 values of 2.0 and above obtained using 
Nanodrop (ThermoFisher). Removal of genomic DNA 
contamination was verified using qPCR consisting of a 
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10 uL reaction with 18.75 ng/uL RNA (three times final 
concentration) and 300  nM cysG primers. A total of 1 
ug RNA in addition to iScript mastermix (BioRad) was 
used to create cDNA, which was subsequently diluted 
to a final concentration of 6.25 ng/uL in nuclease free 
water. 25 ng of cDNA was used in a 10 uL reaction with 
SsoAdvanced SYBER mastermix (Biorad) and 300 nM 
final primer concentration. The cysG gene was used as a 
reference, and the ΔΔCT method was used for relative 
expression analysis using UPEC reference strains UTI89 
(cystitis strain) and CFT073 (pyelonephritis strain) as a 
positive controls given that they both contain all three 
genes [14, 15, 33–35]. The experiments were performed 
in biological duplicates.

Statistical analysis
Chi-squared test, Fisher’s exact test, and descriptive sta-
tistics on clinical data were performed using SPSS Statis-
tics (IBM, version 29). Fisher’s exact test, Mann-Whitney 
test, paired t-test, and correlation analysis on experie-
mental data were performed using software GraphPad 
Prism 10 (Graphpad, San Diego, CA, version 10.4.1).

Results
Patient characteristics
A total of 72 patients were evaluated for this study. Post-
menopausal women with at least one UTI diagnosis were 
grouped based on a history of single or recurrent epi-
sodes and were compared with respect to demograph-
ics and comorbid conditions particularly those known 
to predispose to UTI development (Table 1). The age of 
the study patients ranged from 50 to 95 years old with an 
overall median age of 73.5 years. Patients in the recurrent 
group were slightly older compared to those with single 
episode (median age of 78 vs. 72 years). The majority of 
the patients identified as White (50.0%, 36/72) followed 
by Hispanic (29.2%, 21/72). The majority of the patients 
were diagnosed with cystitis (84.7%, 61/72), followed by 
pyelonephritis (8.3%, 6/72) and urosepsis (2.8%, 2/72). 
Three patients (Other, 4.2%) had abnormal urinalysis 
but no mention of a diagnosis in the medical records. In 
the recurrent arm, the median number of previous epi-
sodes within the last 12 months was 3 (IQR  2, 4). The 
overall prevalence of comorbid conditions among study 
patients were 25% (18/72) for diabetes, 23.6% (17/72) kid-
ney disease, 20.8% (15/72) immunocompromised status, 
20.8% (15/72) dementia, 4.2% (3/72) functional quadre-
pelgia, and 4.2% (3/72) with a chronic urinary catheter. 
The prevalence of each comorbid condition was similar 
between study groups except for diabetes where there 
were twice as many patients in the recurrent compared 
to the single episode group (33.3%, 12/36 vs. 16.7%, 6/36); 
all three patients with chronic urinary catheters were 
in the recurrent arm. Most patients were admitted to 

the hospital (66.7%, 48/72) then discharged home after 
receiving antibiotic therapy (55.6%, 40/72). Ertapenem 
was the most frequently prescribed antibiotic (37.5%, 
27/72), followed by ceftriaxone (33.3%, 24/72) and nitro-
furantoin (22.2%, 16/72). Antibiotic therapies were simi-
lar between the study groups.

Prevalence of IBC-supportive genes
We investigated the molecular determinants of IBC for-
mation using PCR to compare the prevalence of fimH, 
hlyA, and ompT among strains in each study group. The 
fimH and ompT genes were observed to be the most 
prevalent among the 72 UPEC strains isolated from 
postmenopausal women with 98.6% (71/72) and 81.9% 
(59/72) of strains possessing the genes respectively, 
whereas the hlyA gene was present in 26.4% (19/72) of 
strains. The majority of strains had both fimH and ompT 
(55.6%, 40/72), with a smaller subset of strains carrying all 
three genes (25.0%, 18/72), or only fimH (16.7%, 12/72). 
The prevalence of all three genes did not differ between 
strains from patients with recurrent or single episode 
UTI (Fig. 1; Fisher’s exact test, fimH p value > 0.999, ompT 
p value = 0.5414, hlyA p value = 0.1073). In the single epi-
sode group, one strain possessed only ompT, and another 
strain had only hlyA and fimH.

Intracellular persistence of UPEC strains
We next sought to characterize the IBC phenotype 
between recurrent and single episode strains using a 
modified intracellular CFU assay. Twelve strains from 
recurrent patients and six strains from patients with sin-
gle episodes were selected for further investigation based 
on the presence of ompT with or without the presence of 
hlyA to represent the population of isolated strains, and 
to enrich for the recurrent group (study group of inter-
est) for the detection of potential differences between the 
groups. Three out of the twelve selected strains from the 
recurrent arm as well as four out of six selected strains 
from the single episode arm also contained the hlyA 
gene in addition to fimH and ompT genes. Overall, recur-
rent strains showed four-fold greater intracellular CFU 
counts compared to single-episode strains following 5 h 
of infection (median 16,248 CFU/mL vs. 4,118 CFU/mL, 
p = 0.0182) (Fig. 2). The range of intracellular CFU counts 
also varied widely between recurrent and single episode 
strains (7,172–129,300 average CFU/mL versus 1,848–
33,258 CFU/mL), indicating differential ability to persist 
intracellularly within bladder epithelial cells.

Expression of IBC-supportive genes during infection and 
laboratory conditions
Since we observed differential intracellular persis-
tence between recurrent and single episode strains, we 
investigated whether the expression of IBC-supportive 
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virulence genes varied between recurrent and single epi-
sode strains during infection of BECs and when grown 
in laboratory media. Notably, we observed gene expres-
sion differences when grown in LB media compared to 
during infection in BECs and between strains causing 

single or recurrent episodes. When strains were grown 
in LB media, expression of fimH and ompT was similar 
between the two groups, p = 0.7503 and 0.8201 respec-
tively (Supplemental Fig.  1). However, when the gene 
expression data was compared between intracellular 

Table 1  Study participant characteristics
All Patients
(n = 72)

Recurrent Patients (n = 36) Single episode Patients (n = 36) P valuea

Age (y, median (IQR)) 73.5 (64, 83.5) 78 (68.25, 88.5) 72 (60.5, 80) 0.239
Race (%)
White 36 (50.0) 17 (47.2) 19 (52.8) 0.637
Black 6 (8.3) 4 (11.1) 2 (5.6) 0.674
Hispanic 21 (29.2) 13 (36.1) 8 (22.2) 0.195
Asian 3 (4.2) 0 3 (8.3) 0.239
Other 6 (8.3) 2 (5.6) 4 (11.1) 0.674
UTI Diagnosis (%)
Urinary tract infection 61 (84.7) 31 (86.1) 30 (83.3) 0.743
Pyelonephritis 6 (8.3) 2 (5.6) 4 (11.1) 0.674
Urosepsis 2 (2.8) 1 (2.8) 1 (2.8) 1.000
Other 3 (4.2) 2 (5.6) 1 (2.8) 1.000
History of UTI (%) 26 (36.1) 26 (72.2) N/A
No. of episodes w/in 12 mon (median (IQR)) 1 (0, 3) 3 (2, 4) N/A
Comorbid Conditions (%)
Diabetes 18 (25.0) 12 (33.3) 6 (16.7) 0.173
Immunocompromised 15 (20.8) 6 (16.7) 9 (25.0) 0.563
Kidney Disease 17 (23.6) 11 (30.6) 6 (16.7) 0.267
Chronic foley catheter 3 (4.2) 3 (8.3) 0 0.239
Dementia 15 (20.8) 9 (25.0) 6 (16.7) 0.563
Functional quadriplegia 3 (4.2) 1 (2.8) 2 (5.6) 1.000
Admission (%)
ED 21 (29.1) 9 (25.0) 12 (33.3) 0.605
Hospital 48 (66.7) 24 (66.7) 24 (66.7) 1.000
Other 3 (4.2) 3 (8.3) 0 0.239
Discharge Disposition (%)
Home 40 (55.6) 19 (52.8) 21 (58.3) 0.635
Skilled nursing facility 25 (34.7) 14 (38.9) 11 (30.6) 0.458
Deceased 3 (4.2) 0 3 (8.3) 0.239
Other 4 (5.6) 3 (8.3) 1 (2.8) 0.614
No. of Antibiotics Prescribed (median (IQR)) 2 (1, 2) 2 (1, 2) 2 (1, 2)
Antibiotic prescribed (n (%))
Ertapenem 27 (37.5) 15 (41.7) 12 (33.3) 0.627
Meropenem 11 (15.3) 5 (13.9) 6 (16.7) 0.865
Trimethoprim-Sulfamethoxazole 7 (9.7) 2 (5.6) 5 (13.9) 0.460
Nitrofurantoin 16 (22.2) 11 (30.6) 5 (13.9) 0.182
Fosfomycin 1 (1.4) 1 (2.8) 0 0.532
Ciprofloxacin 6 (8.3) 2 (5.6) 4 (11.1) 0.643
Piperacillin-Tazobactam 7 (9.7) 3 (8.3) 4 (11.1) 0.842
Amoxicillin-Clavulanate 2 (2.8) 1 (2.8) 1 (2.8) 0.840
Cephalexin 3 (4.2) 2 (5.6) 1 (2.8) 0.742
Cefdinir 1 (1.4) 1 (2.8) 0 0.532
Cefuroxime 3 (4.2) 2 (5.6) 1 (2.8) 0.742
Ceftriaxone 24 (33.3) 10 (27.8) 14 (38.9) 0.584
Gentamicin 1 (1.4) 0 1 (2.8) 0.358
a Mann-Whitney t-test performed for continuous variables and Chi-squared or Fisher’s exact test performed for categorical variables as appropriate comparing 
recurrent and single-episode patients
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populations of bacteria and growth in LB media, ompT 
expression was significantly increased in the recurrent 
group (Fig. 3, p = 0.0312), supporting its role in virulence. 
Interestingly, among the single episode strains, fimH was 

significantly decreased in the intracellular population 
compared to growth in LB media (Fig. 3, p = 0.0365) while 
recurrent strains did not differ in expression between LB 
and intracellular environments (Fig. 3). No difference in 

Fig. 2  Comparison of intracellular CFU counts of clinical UPEC from recurrent and single episode patients. 12 recurrent strains, and 6 single episode 
strains were used to infect bladder cell line 5637 at MOI 15 for two hours. Extracellular bacteria were washed away and cells treated with 450 ug/mL 
amikacin for two hours, then lysed and counted. Mann-Whitney test performed

 

Fig. 1  Presence/absence of virulence genes in UPEC strains isolated from 72 postmenopausal women. PCR was performed to amplify genes, then visual-
ized using gel electrophoresis. UTI89 used as positive control; cysG used as the reference gene. Fisher’s exact test performed to compare the prevalence 
of each gene in recurrent and single episode strains (fimHp value > 0.999, ompTp value = 0.5414, hlyAp value = 0.1073)
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Fig. 3  Normalized ompT, fimH, and hlyA expression in LB media and during BEC infection (ΔΔCq). Bacteria incubated to mid-log phase in LB for RNA 
extraction; BEC infection performed at MOI 50 as described for intracellular RNA extraction. Normalized to cysG and control strains, UTI89 and CFT073. 
Paired t-test performed
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hlyA expression was observed between LB and infection 
for both groups. A trend towards higher intracellular 
expression of fimH and ompT was observed in recurrent 
strains when directly compared to that in single episode 
strains, with median ΔΔCq values 3- and 2-fold higher, 
p = 0.0529 and 0.0831, respectively (Supplemental Fig. 1). 
Taken together, these results suggest strain differences 
between those causing recurrent versus single episodes 
of UTI in postmenopausal women in both the intracellu-
lar expression of IBC-supportive genes and the intracel-
lular persistence phenotype.

Exploratory correlation analysis between intracellular CFUs 
and intracellular expression of ompT and fimH
Given the observed increase in intracellular gene expres-
sion, we performed exploratory correlation analysis 
between intracellular gene expression and intracellular 
CFUs produced by all 18 strains using Spearman correla-
tion. Intracellular expression of ompT and fimH displayed 
a modest positive correlation with intracellular CFUs 
(Supplemental Fig. 2A; r = 0.23, 0.39 (p values = 0.367 and 
0.247)). However, removal of the recurrent strain outlier 
yielded a stronger correlation with only fimH expression 
as statistically significant (Supplemental Fig. 2B; r = 0.42, 
0.53 (p values = 0.095 and 0.031)). These preliminary 
results suggest the potential contribution of both ompT 
and fimH to intracellular survival of UPEC in bladder epi-
thelial cells.

Discussion
Recurrent UTIs have been attributed in part to the devel-
opment of persistent bacterial reservoirs from invad-
ing UPEC forming intracellular bacterial communities 
(IBCs), as the cycle of IBC formation facilitates spread 
of the bacteria deep into the bladder tissue [12, 41]. This 
phenomenon has been observed in the bladders of post-
menopausal women, who have been previously identified 
as high risk for developing recurrent UTIs [4]. Although 
observed within the bladders of postmenopausal women, 
the role of microbial determinants in IBC formation 
in this high risk population remains unclear. This study 
sought to examine the clinical characteristics of post-
menopausal women who experienced recurrent versus 
single episode UTIs caused by ESBL-producing UPEC 
strains and compare the virulence gene expression and 
differential intracellular persistence of the infected 
strains. Patient factors known to increase risk of recur-
rence such as immunocompromised status and kidney 
disease were similar between groups, with twice as many 
diabetic patients in the recurrent arm though the differ-
ence was not statistically significant [3, 28, 30, 31].

With respect to microbial characteristics, the IBC-sup-
portive genes fimH, and ompT were both highly prevalent 
across study strains, irrespective of recurrent or single 

episode UTI. The prevalence of each gene was consistent 
with published literature [21, 24, 25, 42–44]. Notably, 
we have shown that expression of ompT by the recur-
rent strains was significantly increased during infection 
compared to when grown in standard laboratory media. 
Additionally, a trend towards higher expression was 
observed in recurrent strains compared to single episode 
strains but will need to be confirmed with a larger sample 
size. These results highlighted the potential importance 
of OmpT in the intracellular environment, which is con-
sistent with previous literature linking OmpT to biofilm 
formation [24, 45]. As the IBC structure has previously 
been observed to be biofilm-like, the increase in intracel-
lular ompT expression may support the formation and/or 
maintenance of IBCs within BECs [11, 46]. Interestingly, 
type 1 fimbrial adhesin FimH expression was increased 
during in vitro infection in BECs among recurrent strains 
compared to expression during infection with single epi-
sode strains, and was significantly decreased in single 
episode strains during infection compared to expres-
sion in LB media. These results suggest that the role of 
FimH in the intracellular process of IBC formation may 
be strain dependent and relies on the microbial produc-
tion of FimH which can be regulated by environmental 
cues such as osmolarity [47, 48]. Previous studies have 
also shown in both UPEC and K. pneumoniae that muta-
tions in the FimH protein directly impact IBC formation 
and bladder colonization [33, 49]. Mutations support-
ing increased attachment and IBC formation may work 
in concert with other virulence factors to persist in the 
bladder tissue. When directly comparing intracellular 
expression of ompT and fimH between recurrent and 
single episode strains, there was no significant difference 
between the groups although a trend towards increased 
expression in the recurrent group was observed. Nota-
bly, significantly greater intracellular CFUs were found 
with recurrent strains compared to single episode strains. 
This study is the first to describe a significant difference 
in intracellular persistence of ESBL-producing UPEC iso-
lated from postmenopausal women in association with 
UTI recurrence. Differential ability to persist intracellu-
larly may be attributed to adaptive changes in virulence 
gene expression and production that develop in vivo. A 
modest positive correlation was observed between intra-
cellular CFUs and intracellular expression of ompT and 
fimH for all 18 strains though not statistically significant, 
and show potential contributions of intracellular gene 
expression changes to adaptation in the bladder environ-
ment. For example, differential production of capsule 
production, alterations in metabolism, and the accumu-
lation of various mutations supporting overall virulence, 
resistance, and metabolism changes over time has been 
observed in K. pneumoniae strains which successfully 
persisted in the bladder to cause chronic infection [50, 
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51]. Virulence gene expression changes in UPEC strains 
may support intracellular survival and adaptation to their 
particular host. Previous studies investigating virulence 
and metabolic gene expression in UPEC isolated from 
females with active UTI showed large variations in fimH 
expression in human urine as well as expression differ-
ences between voided urine and active infection [52, 53]. 
Urine composition and microbiome can vary between 
pre- and post-menopausal women, and between women 
in the same life stage [54–57]. Adaptation to each host 
may provide evolutionary and fitness benefits to infect-
ing UPEC strains, as expression profiles vary significantly 
between laboratory media and urine as well as between 
patients given the variation in available nutrients and 
metabolites [52, 53, 57, 58]. Further studies with larger 
sample sizes are needed to confirm the direct contribu-
tion of OmpT and FimH, and to elucidate whether UPEC 
virulence factors change over time to better support 
chronic infection and persistence in the bladders of post-
menopausal women.

The primary strength of this study lies in the investi-
gation of the molecular characteristics of the bacteria 
causing the infections to complement the clinical char-
acteristics of the patients experiencing recurrent UTIs. 
We are the first to show that strains causing recurrent 
infections in postmenopausal women have differential 
abilities to form IBCs compared to strains causing single 
episodes. The intracellular CFU counts for UPEC strain 
CFT073 were also consistent with previous studies using 
a bladder epithelial cell monolayer model, validating our 
experimental approach [14, 16, 37]. This work empha-
sizes the importance of using molecular determinants 
such as expression of bacterial protease OmpT in addi-
tion to patient factors in devising therapeutic strategies 
targeting IBC formation to prevent recurrent infection.

Several limitations to this study are notable. This ret-
rospective study had a small sample size and the patients 
were selected from a single hospital site, although the 
patient demographics match a recently published large 
single-site epidemiology study on 374,171 women expe-
riencing recurrent UTIs [3]. Patients in the single epi-
sode study group were identified based on single site visit 
for UTIs on medical records; however, it is possible that 
those patients could visit other clinic sites for UTI diag-
nosis and treatment. Infections were performed in an in 
vitro static model of the bladder using a monolayer of 
BECs which only consists on one layer of epithelium. We 
plan to investigate the development of IBCs using strains 
from these recurrent UTI patients in a 3D model of the 
bladder using primary human bladder epithelial cells to 
examine the adaptation of identified UPEC virulence fac-
tors over time in bladder tissue.

Conclusions
ESBL-UPEC strains causing recurrent UTIs in post-
menopausal women exhibit differential expression of 
IBC-supportive virulence factors and intracellular persis-
tence phenotypes as demonstrated in this study. Future 
investigations will explore the antivirulence potential of 
current and new treatments on the expression of IBC-
supportive virulence factors and their efficacy in the 
clearance of IBCs generated by ESBL-UPEC from post-
menopausal women.
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